75=-16t^2+80t+4

Simple and best practice solution for 75=-16t^2+80t+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 75=-16t^2+80t+4 equation:



75=-16t^2+80t+4
We move all terms to the left:
75-(-16t^2+80t+4)=0
We get rid of parentheses
16t^2-80t-4+75=0
We add all the numbers together, and all the variables
16t^2-80t+71=0
a = 16; b = -80; c = +71;
Δ = b2-4ac
Δ = -802-4·16·71
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{29}}{2*16}=\frac{80-8\sqrt{29}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{29}}{2*16}=\frac{80+8\sqrt{29}}{32} $

See similar equations:

| g(5)=-4(5)+5 | | 9x-23=2x-2 | | -2(d-13)=-10 | | s/9+14=17 | | x^2=-88 | | (x+10)^2=12 | | 3z-13.7=-0.2 | | h/2+17=21 | | 7x-21=4x+33 | | 23x^2+92=0 | | 22=c/3+17 | | -7+8d=-71 | | v/2+9=13 | | 567x^2-28=0 | | b/3-1=2 | | 15+3x-1=5x+8 | | 5x+4x=9+5x | | 2x+5x=5x+15 | | 4x-3x=18-3x | | 25-7x=8x-7x | | -8y=-50 | | (5x)+2x+3=31 | | 5x+20=2x+35 | | 8k+1=6k+7 | | X=2x-48 | | 6x+4=106 | | 0.04*x+x=1100 | | y+3-4=y | | 3/5p+8-p/5=0 | | 10x+14=134 | | .75(p+3)=5.88 | | 9x+8=11x=6 |

Equations solver categories